6 research outputs found

    Spatial and temporal environmental heterogeneity induced by internal tides influences faunal patterns on vertical walls within a submarine canyon

    Get PDF
    Vertical walls of submarine canyons represent features of high conservation value that can provide natural areas of protection for vulnerable marine ecosystems under increasing anthropogenic pressure from deep-sea trawling. Wall assemblages are spatially heterogeneous, attributed to the high environmental heterogeneity over short spatial scales that is a typical feature of canyons. Effective management and conservation of these assemblages requires a deeper understanding of the processes that affect faunal distribution patterns. Canyons are recognised as sites of intensified hydrodynamic regimes, with focused internal tides enhancing near-bed currents, turbulent mixing and nepheloid layer production, which influence faunal distribution patterns. Faunal patterns also respond to broad-scale hydrodynamics and gradients in water mass properties (e.g. temperature, salinity, dissolved oxygen concentration). Oscillating internal tidal currents can advect such gradients, both vertically and horizontally along a canyon's walls. Here we take an interdisciplinary approach using biological, hydrodynamic and bathymetry-derived datasets to undertake a high-resolution analysis of a subset of wall assemblages within Whittard Canyon, North-East Atlantic. We investigate if, and to what extent, patterns in diversity and epibenthic assemblages on deep-sea canyon walls can be explained by spatial and temporal variability induced by internal tides. Vertical displacement of water mass properties by the internal tide was calculated from autonomous ocean glider and shipboard CTD observations. Spatial patterns in faunal assemblage structure were determined by cluster analysis and non-metric Multi-Dimensional Scaling plots. Canonical Redundancy Analysis and Generalised Linear Models were then used to explore relationships between faunal diversity and assemblage structure and a variety of environmental variables. Our results support the hypothesis that internal tides influence spatial heterogeneity in wall faunal diversity and assemblages by generating both spatial and temporal gradients in hydrodynamic properties and consequently likely food supply

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem

    PANC Study (Pancreatitis: A National Cohort Study): national cohort study examining the first 30 days from presentation of acute pancreatitis in the UK

    Get PDF
    Abstract Background Acute pancreatitis is a common, yet complex, emergency surgical presentation. Multiple guidelines exist and management can vary significantly. The aim of this first UK, multicentre, prospective cohort study was to assess the variation in management of acute pancreatitis to guide resource planning and optimize treatment. Methods All patients aged greater than or equal to 18 years presenting with acute pancreatitis, as per the Atlanta criteria, from March to April 2021 were eligible for inclusion and followed up for 30 days. Anonymized data were uploaded to a secure electronic database in line with local governance approvals. Results A total of 113 hospitals contributed data on 2580 patients, with an equal sex distribution and a mean age of 57 years. The aetiology was gallstones in 50.6 per cent, with idiopathic the next most common (22.4 per cent). In addition to the 7.6 per cent with a diagnosis of chronic pancreatitis, 20.1 per cent of patients had a previous episode of acute pancreatitis. One in 20 patients were classed as having severe pancreatitis, as per the Atlanta criteria. The overall mortality rate was 2.3 per cent at 30 days, but rose to one in three in the severe group. Predictors of death included male sex, increased age, and frailty; previous acute pancreatitis and gallstones as aetiologies were protective. Smoking status and body mass index did not affect death. Conclusion Most patients presenting with acute pancreatitis have a mild, self-limiting disease. Rates of patients with idiopathic pancreatitis are high. Recurrent attacks of pancreatitis are common, but are likely to have reduced risk of death on subsequent admissions. </jats:sec

    Towards a scientific community consensus on designating Vulnerable Marine Ecosystems from imagery

    Get PDF
    Management of deep-sea fisheries in areas beyond national jurisdiction by Regional Fisheries Management Organizations/Arrangements (RFMO/As) requires identification of areas with Vulnerable Marine Ecosystems (VMEs). Currently, fisheries data, including trawl and longline bycatch data, are used by many RFMO/As to inform the identification of VMEs. However, the collection of such data creates impacts and there is a need to collect non-invasive data for VME identification and monitoring purposes. Imagery data from scientific surveys satisfies this requirement, but there currently is no established framework for identifying VMEs from images. Thus, the goal of this study was to bring together a large international team to determine current VME assessment protocols and establish preliminary global consensus guidelines for identifying VMEs from images. An initial assessment showed a lack of consistency among RFMO/A regions regarding what is considered a VME indicator taxon, and hence variability in how VMEs might be defined. In certain cases, experts agreed that a VME could be identified from a single image, most often in areas of scleractinian reefs, dense octocoral gardens, multiple VME species' co-occurrence, and chemosynthetic ecosystems. A decision flow chart is presented that gives practical interpretation of the FAO criteria for single images. To further evaluate steps of the flow chart related to density, data were compiled to assess whether scientists perceived similar density thresholds across regions. The range of observed densities and the density values considered to be VMEs varied considerably by taxon, but in many cases, there was a statistical difference in what experts considered to be a VME compared to images not considered a VME. Further work is required to develop an areal extent index, to include a measure of confidence, and to increase our understanding of what levels of density and diversity correspond to key ecosystem functions for VME indicator taxa. Based on our results, the following recommendations are made: 1. There is a need to establish a global consensus on which taxa are VME indicators. 2. RFMO/As should consider adopting guidelines that use imagery surveys as an alternative (or complement) to using bycatch and trawl surveys for designating VMEs. 3. Imagery surveys should also be included in Impact Assessments. And 4. All industries that impact the seafloor, not just fisheries, should use imagery surveys to detect and identify VMEs

    A Review of Impact Assessments for Deep-Sea Fisheries on the High Seas

    No full text
    The intensity of deep-sea fisheries on the high seas and the impacts on the marine environment call for effective measures to ensure that fishing does not compromise the commitments established for protecting biodiversity in the deep ocean by the United Nations. In order to prevent significant adverse impacts (SAIs) on vulnerable marine ecosystems (VMEs), high seas fishing nations agreed to stop fishing activities where VMEs are known or likely to occur unless the fishing can be managed to prevent SAIs on VMEs. To determine whether fishing activities can be conducted in a sustainable manner that prevents impacts on VMEs, States agreed on criteria for conducting impact assessments (IAs) for deep-sea fisheries through a set of Guidelines negotiated under the auspices of the United Nations Food and Agriculture Organisation (FAO Guidelines). The FAO Guidelines were adopted in 2009 (FAO 2009) and later that year the UN General Assembly (UNGA) expressly committed States to ensuring that bottom fishing is prohibited unless prior impact assessments consistent with the FAO Guidelines have been carried out. Despite progress made by States and Regional Fisheries Management Organisations and Agreements (RFMO/As) to conduct IAs, there remain significant gaps in the implementation of the IAs following the FAO criteria and commitments in the UNGA resolutions. This report describes the results of a review of a selection of IAs for deep-sea fishing on the high seas conducted by members of the Fisheries Working Group of the Deep-Ocean Stewardship Initiative (DOSI), consisting of a multidisciplinary group of deep-sea ecology, fisheries and policy experts. The nine selected IAs have either been submitted by States to RFMO/As, have been conducted by the RFMO/A itself, or represent an independent evaluation prepared by a fishing nation. The overall goal of the review was to evaluate the content and consistency of the selected IAs against the science-based criteria established in the FAO Guidelines in light of the UNGA resolutions committing States to conduct the assessments consistent with the Guidelines

    Review of the Central and South Atlantic Shelf and Deep-Sea Benthos: Science, Policy, and Management

    No full text
    The Central and South Atlantic represents a vast ocean area and is home to a diverse range of ecosystems and species. Nevertheless, and similar to the rest of the global south, the area is comparatively understudied yet exposed to increasing levels of multisectoral pressures. To counteract this, the level of scientific exploration in the Central and South Atlantic has increased in recent years and will likely continue to do so within the context of the United Nations (UN) Decade of Ocean Science for Sustainable Development. Here, we compile the literature to investigate the distribution of previous scientific exploration of offshore (30 m+) ecosystems in the Central and South Atlantic, both within and beyond national jurisdiction, allowing us to synthesise overall patterns of biodiversity. Furthermore, through the lens of sustainable management, we have reviewed the existing anthropogenic activities and associated management measures relevant to the region. Through this exercise, we have identified key knowledge gaps and undersampled regions that represent priority areas for future research and commented on how these may be best incorporated into, or enhanced through, future management measures such as those in discussion at the UN Biodiversity Beyond National Jurisdiction negotiations. This review represents a comprehensive summary for scientists and managers alike looking to understand the key topographical, biological, and legislative features of the Central and South Atlantic
    corecore